A reaction-diffusion model for radiation-induced bystander effects.
نویسندگان
چکیده
We develop and analyze a reaction-diffusion model to investigate the dynamics of the lifespan of a bystander signal emitted when cells are exposed to radiation. Experimental studies by Mothersill and Seymour 1997, using malignant epithelial cell lines, found that an emitted bystander signal can still cause bystander effects in cells even 60 h after its emission. Several other experiments have also shown that the signal can persist for months and even years. Also, bystander effects have been hypothesized as one of the factors responsible for the phenomenon of low-dose hyper-radiosensitivity and increased radioresistance (HRS/IRR). Here, we confirm this hypothesis with a mathematical model, which we fit to Joiner's data on HRS/IRR in a T98G glioma cell line. Furthermore, we use phase plane analysis to understand the full dynamics of the signal's lifespan. We find that both single and multiple radiation exposure can lead to bystander signals that either persist temporarily or permanently. We also found that, in an heterogeneous environment, the size of the domain exposed to radiation and the number of radiation exposures can determine whether a signal will persist temporarily or permanently. Finally, we use sensitivity analysis to identify those cell parameters that affect the signal's lifespan and the signal-induced cell death the most.
منابع مشابه
Gene transcriptomic profile in arabidopsis thaliana mediated by radiation-induced bystander effects
Background: The in vivo radiation-induced bystander effects (RIBE) at the developmental, genetic, and epigenetic levels have been well demonstrated using model plant Arabidopsis thaliana (A. thaliana). However, the mechanisms underlying RIBE in plants are not clear, especially lacking a comprehensive knowledge about the genes and biological pathways involved in the RIBE in plants. Materials and...
متن کاملRadiation Induced Bystander Effect
Introduction: Radiation effects observed in cells that are not irradiated are known as non-targeted effects. Radiation induced bystander effect (RIBE) as a kind of non-targeted effect has been introduced in recent years. RIBE occurs in unexposed cells which are related to adjacent or distant irradiated cells. RIBE contradict with "target theory" which necessitates radiation tr...
متن کاملRadio-adaptive response of peripheral blood lymphocytes following bystander effects induced by preirradiated CHO-K1 cells using the micronucleus assay
Background: Radio-adaptive response and bystander effects are known phenomena occurring in cells following exposure to ionizing radiation (IR). In this study we examined possible radio-adaptation of lymphocytes following bystander effects induced by CHO-K1 cells. Materials and Methods: Whole blood and CHO-K1 cells were cultured in RPMI-1640 complete medium. Cells were separately irradiated with...
متن کاملAn Investigation of the Effects of Raw Garlic on Radiation-induced Bystander Effects in MCF7 Cells
Introduction Radiation-induced bystander effect (RIBE) is a phenomenon in which radiation signals are transmitted from irradiated cells to non-irradiated ones, inducing radiation effects in these cells. RIBE plays an effective role in radiation response at environmentally relevant low doses and in radiotherapy, given its impact on adjacent normal tissues or those far from the irradiated tumor. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of mathematical biology
دوره 75 2 شماره
صفحات -
تاریخ انتشار 2017